skip to main content


Search for: All records

Creators/Authors contains: "Elkinton, Joseph S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ross, Darrell (Ed.)
    Abstract Hemlock woolly adelgid (HWA; Adelges tsugae Annand (Hemiptera: Adelgidae)) is the cause of widespread mortality of Carolina and eastern hemlock (Tsuga caroliniana Engelmann and T. canadensis (L.) Carrière) throughout the eastern United States (U.S.). Since its arrival in the northeastern U.S., HWA has steadily invaded and established throughout eastern hemlock stands. However, in 2018, anecdotal evidence suggested a sharp, widespread HWA decline in the northeastern U.S. following above-average summer and autumn rainfall. To quantify this decline in HWA density and investigate its cause, we surveyed HWA density in hemlock stands from northern Massachusetts to southern Connecticut and analyzed HWA density and summer mortality in Pennsylvania. As native fungal entomopathogens are known to infect HWA in the northeastern U.S. and rainfall facilitates propagation and spread of fungi, we hypothesized high rainfall facilitates fungal infection of aestivating nymphs, leading to a decline in HWA density. We tested this hypothesis by applying a rain-simulation treatment to hemlock branches with existing HWA infestations in western MA. Our results indicate a regional-scale decline and subsequent rebound in HWA density that correlates with 2018 rainfall at each site. Experimental rain treatments resulted in higher proportions of aestivating nymphs with signs of mortality compared to controls. In conjunction with no evidence of increased mortality from extreme winter or summer temperatures, our results demonstrate an indirect relationship between high rainfall and regional HWA decline. This knowledge may lead to better prediction of HWA population dynamics. 
    more » « less
  2. Abstract

    Carbon starvation posits that defoliation‐ and drought‐induced mortality results from drawing down stored non‐structural carbohydrates (NSCs), but evidence is mixed, and few studies evaluate mortality directly. We tested the relationships among defoliation severity, NSC drawdown and tree mortality by measuring NSCs in mature oak trees defoliated by an invasive insect,Lymantria dispar, across a natural gradient of defoliation severity.

    We collected stem and root samples from mature oaks (Quercus rubraandQ.alba) in interior forests (n = 34) and forest edges (n = 47) in central Massachusetts, USA. Total NSC (TNC; sugar + starch) stores were analysed with respect to tree size, species and defoliation severity, which ranged between 5% and 100%.

    TNC stores declined significantly with increasingly severe defoliation. Forest edge trees had higher TNC stores that were less sensitive to defoliation than interior forest trees, although this may be a result of differing defoliation history. Furthermore, we observed a mortality threshold of 1.5% dry weight TNC.

    Our study draws a direct link between insect defoliation and TNC reserves and defines a TNC threshold below which mortality is highly likely. These findings advance understanding and improve model parametrization of tree response to insect outbreaks, an increasing threat with globalization and climate change.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    TheAdelges(Dreyfusia)piceae(Ratzeburg) species complex is a taxonomically unstable group of six species. Three of the species are cyclically parthenogenetic [Ad.nordmannianae(Eckstein),Ad.prelli(Grossmann), andAd.merkeri(Eichhorn)] and three are obligately asexual [Ad.piceae,Ad.schneideri(Börner), andAd.nebrodensis(Binazzi & Covassi)]. Some species are high‐impact pests of fir (Abies) trees, so stable species names are needed to communicate effectively about management. Therefore, to refine species delimitation, guided by a reconstruction of their biogeographic history, we genotyped adelgids from Europe, North America, and the Caucasus Mountains region with 19 microsatellite loci, sequenced the COI DNA barcoding region, and compared morphology. Discriminant analysis of principal components of microsatellite genotypes revealed four distinct genetic clusters. Two clusters were morphologically consistent withAd.nordmannianae. One of these clusters consisted of samples from the Caucasus Mountains and northern Turkey, and the other included samples from this region as well as from Europe and North America, whereAd.nordmannianaeis invasive. A third cluster was morphologically consistent withAd.piceae, and included individuals from Europe, where it is native, and North America, where it is invasive. In North America, the majority ofAd.piceaeindividuals were assigned to two geographically widespread clones, suggesting multiple introductions. The fourth cluster included individuals morphologically consistent withAd.prelliorAd.merkeri. However, based on genetic assignments, hybrid simulations, and approximate Bayesian computation, we find it likely that these are contemporary hybrids betweenAd.nordmannianaeandAd.piceaethat arose independently in Europe and North America, so we propose thatAd.prelliandAd.merkeriare invalid. Finally, we synonymiseAd.schneideri(syn.n.)withAd.nordmannianaeand designateAd.nebrodensisas subspeciesAd.piceae nebrodensis(stat.n.). Our revised taxonomy therefore recognises two species:Ad.nordmannianaeandAd.piceae, which we estimate to have diverged recently, during one of the last two interglacial periods. Finally, we comment on this species complex being in the midst of transition between sexual and asexual reproduction, a pattern that is probably common in Adelgidae.

     
    more » « less